EE105 - Fall 2014
 Microelectronic Devices and Circuits

Prof. Ming C. Wu
wu@eecs.berkeley.edu
511 Sutardja Dai Hall (SDH)

Small-Signal Operation MOSFET Small-Signal Model - Summary

- Since gate is insulated from channel by gate-oxide input resistance of transistor is infinite.
- Small-signal parameters are controlled by the Q-point.
- For the same operating point, MOSFET has lower transconductance and an output resistance that is similar to the BJT.

$$
\begin{aligned}
& I_{G}=0 \\
& I_{D}=\frac{K_{n}}{2}\left(V_{G S}-V_{T N}\right)^{2}\left(1+\lambda V_{D S}\right)
\end{aligned}
$$

Transconductance:

$$
g_{m}=\frac{2 I_{D}}{V_{G S}-V_{T N}}=\sqrt{2 K_{n} I_{D}}
$$

Output resistance:

$$
r_{o}=\frac{1}{g_{o}}=\frac{1+\lambda V_{D S}}{\lambda I_{D}} \cong \frac{1}{\lambda I_{D}}
$$

Amplification factor for $I V_{D S} \ll 1$:

$$
\mu_{f}=g_{m} r_{o}=\frac{1+\lambda V_{D S}}{\lambda I_{D}} \cong \frac{1}{\lambda} \sqrt{\frac{2 K_{n}}{I_{D}}}
$$

Lecture13-Small Signal Model-MOSFET 2

MOSFET Small-Signal Operation Body Effect in Four-terminal MOSFETs

Drain current depends on threshold voltage which in turn depends on $v_{S B}$. Back-gate transconductance is:

$$
\begin{aligned}
& g_{m b}=\left.\frac{\partial i_{D}}{\partial v_{B S}}\right|_{\text {QQ-point }}=-\left.\frac{\partial i_{D}}{\partial v_{S B}}\right|_{\text {QQ-point }} \\
& g_{m b}=-\left(\frac{\partial i_{D}}{\partial V_{T N}}\right)\left|\left(\frac{\partial V_{T N}}{\partial v_{S B}}\right)\right|_{\text {Q-point }}=-\left(-g_{m} \eta\right)=g_{m} \eta \\
& \quad \begin{array}{l}
0<\eta<3 \text { is called the back-gate } \\
\text { transconductance parameter. }
\end{array}
\end{aligned}
$$

$$
\circ
$$

bulk terminal is a reverse-biased diode.
Hence, no conductance from the bulk terminal to other terminals.

MOSFET Small-Signal Operation Small-Signal Model for PMOS Transistor

- For a PMOS transistor

$$
\begin{aligned}
& v_{S G}=V_{G G}-v_{g g} \\
& i_{D}=I_{D}-i_{d}
\end{aligned}
$$

- Positive signal voltage \mathbf{v}_{gg} reduces source-gate voltage of the PMOS transistor causing decrease in total current exiting the drain, equivalent to an increase in the signal current entering the drain.
- The NMOS and PMOS small-signal models are the same!

Common-Source Amplifiers Small-Signal Analysis - ac Equivalent Circuit

- ac equivalent circuit is constructed by assuming that all capacitances have zero impedance at signal frequency and dc voltage sources are ac ground.

Common-Source Amplifiers Small-Signal Equivalent Circuit

- Input voltage is applied to the gate terminal
- Output signal appears at the drain terminal
- Source is common to both input and output signals Thus circuit is termed a Common-Source (C-S) Amplifier.
- The terminal gain of the C-S amplifier is the gain from the gate terminal to the drain terminal

$$
A_{v t}^{C E}=\frac{v_{d}}{v_{g}}=-g_{m} R_{L} \quad R_{L}=r_{o}\left\|R_{D}\right\| R_{3}
$$

Common-Source Amplifiers Input Resistance and Signal-Source Gain

Define $R_{i G}$ as the input resistance looking into the base of the transistor. $R_{i n}$ is the resistance presented to v_{i}

The signal source voltage gain is:

$$
\begin{aligned}
& A_{v}^{C S}=\frac{v_{o}}{v_{i}}=\frac{v_{o}}{v_{g}} \frac{v_{g}}{v_{i}}=A_{v t}^{C S} \frac{R_{G}}{R_{I}+R_{G}} \\
& A_{v}^{C S}=-g_{m} R_{L}\left(\frac{R_{G}}{R_{I}+R_{G}}\right)
\end{aligned}
$$

Common-Source Amplifiers "Rule of Thumb" Design Estimate

$A_{v}^{C S}=-g_{m} R_{L}\left(\frac{R_{G}}{R_{I}+R_{G}}\right) \cong A_{v t}^{C S} \quad A_{v t}^{C S}=-g_{m} R_{L} \quad R_{L}=r_{o}\left\|R_{D}\right\| R_{3}$
Typically: $\quad r_{o} \gg R_{D}$ and $R_{3} \gg R_{D} \quad A_{v}^{C S} \cong-g_{m} R_{D}=-\frac{I_{D} R_{D}}{\left(\frac{V_{G S}-V_{T N}}{2}\right)}$
$I_{D} R_{D}$ represents the voltage dropped across drain resistor R_{D}
A typical design point is $\quad I_{D} R_{D}=\frac{V_{D D}}{2} \quad$ with $\quad V_{G S}-V_{T N}=1 \mathrm{~V}$

$$
\therefore A_{v}^{C S} \cong-V_{D D}
$$

Our rule-of-thumb estimate for the C-S amplifier:
the voltage gain equals the power supply voltage.
Note that this is 10 times smaller than that for the BJT!

Common-Source Amplifiers Voltage Gain Example

- Problem: Calculate voltage gain, input resistance and maximum input signal level for a common-source amplifier with a specified Q-point
- Given data: $K_{n}=0.50 \mathrm{~mA} / \mathrm{V}^{2}, V_{T N}=1 \mathrm{~V}$,
- $\lambda=0.0133 \mathrm{~V}^{-1}$, Q -point is $(0.241 \mathrm{~mA}, 3.81 \mathrm{~V})$
- Assumptions: Transistor is in the active region. Signals are low enough to be
 considered small signals.
- Analysis:

$$
\begin{aligned}
& g_{m}=\sqrt{2 K_{n} I_{D}\left(1+\lambda V_{D S}\right)}=0.503 \mathrm{mS} \quad r_{o}=\frac{\lambda^{-1}+V_{D S}}{I_{D}}=328 \mathrm{k} \Omega \\
& R_{G}=R_{1}\left\|R_{2}=892 \mathrm{k} \Omega \quad R_{L}=r_{o}\right\| R_{D} \| R_{3}=17.1 \mathrm{k} \Omega
\end{aligned}
$$

Common-Source Amplifiers Voltage Gain Example (cont.)

$$
\begin{aligned}
& g_{m}=0.503 \mathrm{mS} \quad r_{o}=328 \mathrm{k} \Omega \quad R_{G}=892 \mathrm{k} \Omega \quad R_{L}=17.1 \mathrm{k} \Omega \\
& A_{v}^{C S}=-g_{m} R_{L}\left(\frac{R_{G}}{R_{I}+R_{G}}\right)=-0.503 \mathrm{mS}(17.1 \mathrm{k} \Omega)\left(\frac{892 \mathrm{k} \Omega}{1 \mathrm{k} \Omega+892 \mathrm{k} \Omega}\right)=-8.60(0.999)=-8.59 \\
& R_{i n}=R_{I}+R_{G}=893 \mathrm{k} \Omega \quad v_{g s}=v_{i}\left(\frac{R_{G}}{R_{I}+R_{G}}\right) \rightarrow\left|v_{i}\right|\left(\frac{R_{G}}{R_{I}+R_{G}}\right) \leq 0.2\left(V_{G S}-V_{T N}\right) \\
& V_{G S}-V_{T N} \cong \sqrt{\frac{2 I_{D}}{K_{n}}}=0.982 \mathrm{~V} \quad \therefore\left|v_{i}\right| \leq 0.2(0.982 \mathrm{~V})\left(\frac{893 \mathrm{k} \Omega}{892 k \Omega}\right)=0.197 \mathrm{~V}
\end{aligned}
$$

Check the rule-of-thumb estimate: $\quad A_{v}^{C S} \cong-V_{D D}=-12 V$ (ballpark estimate)

C-E and C-S Amplifiers Output Resistance

Cal Lecture13-Small Signal Model-MOSFET 11

Common-Emitter / Common-Source Amplifiers Summary

	COMMON-EMITTER AMPLIFIER	COMMON-SOURCE AMPLIFIERS		
Terminal gain $A_{v t}$	$-g_{m} R_{L}$	$-g_{m} R_{L}$		
Rule-of-thumb estimate for $g_{m} R_{L}$	$-10 V_{C C}$	$-V_{D D}$		
Voltage gain A_{v}	$A_{v}=\frac{\mathbf{v}_{o}}{\mathbf{v}_{i}}=-g_{m}\left(R_{\text {out }} \\| R_{3}\right)\left(\frac{R_{\text {in }}}{R_{I}+R_{\text {in }}}\right)$			
Input resistance $R_{\text {in }}$	$R_{B} \\| r_{\pi}$	R_{G}		
Output resistance $R_{\text {out }}$	$R_{C} \\| r_{o} \cong R_{C}$	$R_{D} \\| r_{o} \cong R_{D}$		
Input signal phase	0.005 V	$0.2\left(V_{G S}-V_{T N}\right)$ or $0.2\left(V_{G S}-V_{P}\right)$		

Amplifier Power Dissipation

Static power dissipation in amplifiers is found from their dc equivalent circuits.

(a) Total power dissipated in BJT:

$$
P_{D}=V_{C E} I_{C}+V_{B E} I_{B}
$$

Total power supplied is:

$$
P_{s}=V_{c c}\left(I_{c}+I_{2}\right)
$$

(b) Total power dissipated in MOSFET:

$$
P_{D}=V_{D S} I_{D}
$$

Total power supplied is:
$P_{S}=V_{D D}\left(I_{D}+I_{2}\right)$ Lecture13-Small Signal Model-MOSFET 15

Amplifier Signal Range

Similarly for MOSFETs:
$V_{M} \leq \min \left[I_{D} R_{D},\left(V_{D S}-\left(V_{G S}-V_{T N}\right)\right)\right]$

$$
\therefore V_{m} \leq \min \left[I_{C} R_{C},\left(V_{C E}-V_{B E}\right)\right]
$$

